Remarks on Fourier Multipliers and Applications to the Wave Equation
نویسنده
چکیده
Exploiting continuity properties of Fourier multipliers on modulation spaces and Wiener amalgam spaces, we study the Cauchy problem for the NLW equation. Local wellposedness for rough data in modulation spaces and Wiener amalgam spaces is shown. The results formulated in the framework of modulation spaces refine those in [3]. The same arguments may apply to obtain local wellposedness for the NLKG equation.
منابع مشابه
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملRadial Fourier Multipliers in High Dimensions
Given a fixed p 6= 2 we prove a simple and effective characterization of all radial multipliers of FL(R) provided that the dimension d is sufficiently large. The method also yields new L space-time regularity results for solutions of the wave equation in high dimensions.
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملMULTIPLIERS AND THEIR APPLICATIONS IN EARTHQUAKE ENGINEERING
In this paper we shall study the multipliers on Banach algebras and We prove some results concerning Arens regularity and amenability of the Banach algebra M(A) of all multipliers on a given Banach algebra A. We also show that, under special hypotheses, each Jordan multiplier on a Banach algebra without order is a multiplier. Finally, we present some applications of m...
متن کاملL–L decay estimates for wave equations with monotone time-dependent dissipation
This expository article is intended to give an overview about recently achieved results on asymptotic properties of solutions to the Cauchy problem utt −∆u + b(t)ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2 for a wave equation with time-dependent dissipation term. The results are based on structural properties of the Fourier multipliers representing its solution. The article explains the general philos...
متن کامل